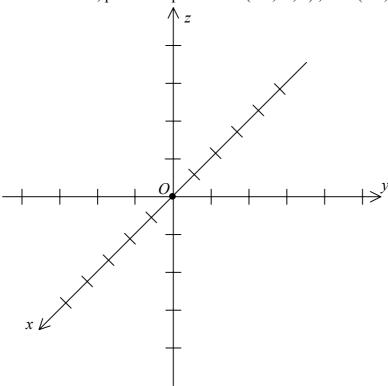
1 Dans le repère orthonormé, placez les points A = (-2; 0; 3); B = (-2; -3; 0) et C = (3; 4; 5).



On considère, dans un repère orthonormé d'origine O, les points A = (3; -1; 0); B = (4; 4; -1) et C = (0; 3; 2).

Placez les points A, B et C.

Dessinez des représentants des vecteurs : $\vec{a} = \overrightarrow{OA}$; $\vec{b} = \overrightarrow{OB}$; $\vec{c} = \overrightarrow{OC}$; \overrightarrow{AB} et \overrightarrow{BC} .

- b) Calculez algébriquement les composantes des vecteurs \overrightarrow{AB} et \overrightarrow{BC} .
- c) Complétez la phrase suivante :

Les composantes de $\overrightarrow{AB} = (\dots ; \dots ; \dots)$

indiquent que, pour aller du point A au point B,

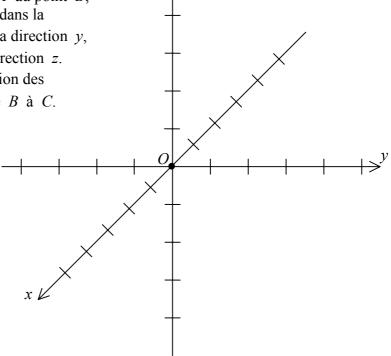
il faut se déplacer de ... unités dans la

direction x, de ... unités dans la direction y,

et enfin de \dots unités dans la direction z.

Il en va de même pour l'interprétation des

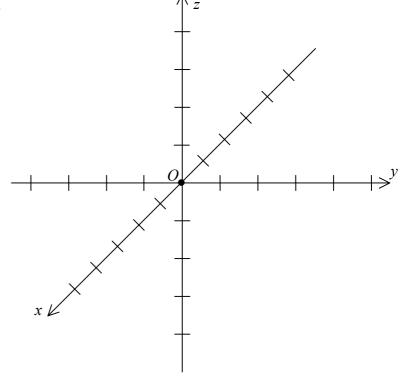
composantes de \overrightarrow{BC} pour aller de B à C.



- 2 suite
 - d) Soit le point D = (1; -2; 2). Calculez les coordonnées du point E tel que $\overrightarrow{DE} = \overrightarrow{AB}$, puis

représentez ci-dessous le vecteur \overline{DE} . Dessinez les points F et H tels que

$$\overrightarrow{DF} = \frac{1}{2} \overrightarrow{AB}$$
 et $\overrightarrow{DH} = -\frac{1}{4} \overrightarrow{AB}$.



3 On considère, dans un repère orthonormé d'origine O, les points A = (2;5;-4) et B = (4;1;5).

On considère le point S satisfaisant : $\overrightarrow{OS} = \overrightarrow{OA} + \overrightarrow{OB}$.

- a) Calculez les coordonnées du point S.
- b) Calculez les composantes des vecteurs \overrightarrow{AB} et \overrightarrow{AS} . Ces deux vecteurs sont-ils multiples l'un de l'autre?
- c) Les points A; B et S ont été placés dans le repère ci-dessous. Le point S appartient-il à la droite (AB) comme le suggère la représentation ci-dessous?
- d) Calculez la norme du vecteur \overrightarrow{OA} , la norme du vecteur \overrightarrow{OB} et la norme du vecteur \overrightarrow{AB} .
- e) L'égalité $\|\overrightarrow{OA}\| + \|\overrightarrow{OB}\| = \|\overrightarrow{AB}\|$ est-elle satisfaite, comme le suggère la représentation ?

