$$\mathbf{0} \quad f: \mathbb{R} \to \mathbb{R} \qquad \text{et} \qquad g: \mathbb{R} \to \mathbb{R} \\
 x \mapsto \sqrt{2-x} \qquad \qquad x \mapsto -x^2 + 3x - 2$$

a) On cherche x tel que
$$2-x \ge 0$$
, donc $2 \ge x$. Dom $(f) =]-\infty$; 2]

b) L'ordonnée à l'origine de la fonction
$$f$$
: $f(0) = \sqrt{2} \approx 1,414213$

c) L'image de 1,75 par
$$f = f(1,75) = \sqrt{2-1,75} = \sqrt{0,25} = 0,5$$

d)
$$f(1,25) = \sqrt{2-1,25} = \sqrt{0,75} = \sqrt{3 \cdot 0,25} = 0,5 \cdot \sqrt{3} \approx 0,866025$$

e) Les zéros de la fonction g satisfont :
$$-x^2 + 3x - 2 = 0$$

En multipliant par
$$-1$$
, on obtient une expression plus simple à factoriser : $x^2 - 3x + 2 = 0$.

Factorisation:
$$x^2 - 3x + 2 = (x - 2) \cdot (x - 1) = 0$$

Donc l'ensemble des zéros de
$$g$$
 est : $\{1, 2\}$.

On aurait pu résoudre
$$-x^2 + 3x - 2 = 0$$
 par Viète : $a = -1$; $b = 3$; $c = -2$.

$$\Delta = b^2 - 4 \cdot a \cdot c = 9 - 4 \cdot (-1) \cdot (-2) = 9 - 8 = 1$$

Solutions :
$$x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-3 \pm 1}{-2} = \begin{cases} 1 \\ 2 \end{cases}$$
. On obtient les même réponses qu'avec la factorisation.

f) Les préimages de 0,25 par g sont caractérisées par :
$$-x^2 + 3x - 2 = 0,25$$

Donc:
$$0 = 2,25-3x+x^2$$
. Par Viète: $a = 1$; $b = -3$; $c = 2,25$.

$$\Delta = b^2 - 4 \cdot a \cdot c = 9 - 4 \cdot 1 \cdot 2,25 = 9 - 9 = 0.$$
 Il n'y a donc qu'une seule solution qui est :

$$x = \frac{-b}{2a} = \frac{3}{2} = 1,5$$

g) Les préimages de 2 par g sont caractérisées par :
$$-x^2 + 3x - 2 = 2$$

Donc:
$$0 = 4 - 3x + x^2$$
. Par Viète: $a = 1$; $b = -3$; $c = 4$.

$$\Delta = b^2 - 4 \cdot a \cdot c = 9 - 4 \cdot 1 \cdot 4 = 9 - 16 = -7 < 0.$$
 Il n'y a donc aucune solution.

2 La fonction "valeur absolue" est définie par :
$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

$$|7| = 7$$
; $|-7| = 7$; $|0| = 0$; $|17 - 29| = |-12| = 12$

$oldsymbol{3}$ Si α est la mesure en **degrés** d'un angle et x la mesure en **radians** du même angle,

alors une simple règle de trois donne :
$$x = \frac{\pi}{180^{\circ}} \cdot \alpha$$
 et $\alpha = \frac{180^{\circ}}{\pi} \cdot x$.

Conversion de degrés en radians :

Conversion de degres en radians.							
0°	30°	45°	60°	90°	120°	180°	360°
0	π	π	π	π	2π	π	2π
	6	$\frac{\overline{4}}{4}$	$\frac{}{3}$	$\frac{}{2}$	3		

3 suite

 0° : $\sin(0) = \cos(\frac{\pi}{2}) = \frac{\sqrt{0}}{2} = 0$ Remarquez la régularité des chiffres sous la racine!

$$30^{\circ}$$
: $\sin\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{\sqrt{1}}{2} = \frac{1}{2}$

$$45^{\circ} : \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$60^\circ$$
: $\sin\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$

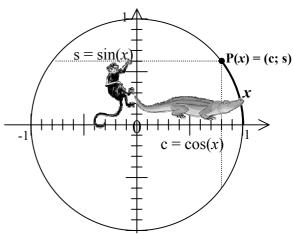
90°:
$$\sin\left(\frac{\pi}{2}\right) = \cos(0) = \frac{\sqrt{4}}{2} = 1$$

Plus généralement :

$$\sin(x) = \cos\left(\frac{\pi}{2} - x\right)$$
 et $\cos(x) = \sin\left(\frac{\pi}{2} - x\right)$

Rappelez-vous que : $\cos^2(x) + \sin^2(x) = 1$, qui est une conséquence du théorème de Pythagore.

$$\sin(\pi) = \sin(2\pi) = 0$$
 ; $\cos(\pi) = -1$; $\cos(2\pi) = 1$



Truc mnémotechnique :

s = le singe qui grimpe

c = le **crocodile** qui rampe

4 4.1

$$\exp_{10}(3) = 10^3 = 1'000; \quad \exp_{10}(-2) = 10^{-2} = 0,01;$$

 $\exp_{10}(0,5) = 10^{\frac{1}{2}} = \sqrt{10}$

$$\log_{10}(10) = 1$$
; $\log_{10}(100) = 2$; $\log_{10}(0,1) = -1$;

$$\log_{10}(\sqrt{10}) = 0,5$$

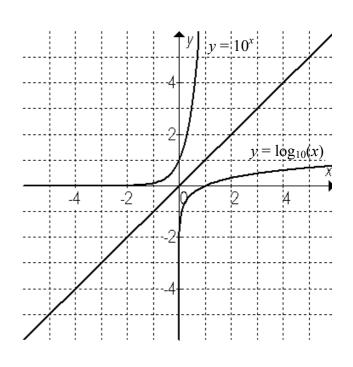
4.2 Les fonctions \log_{10} et \exp_{10} sont réciproques l'une de l'autre :

$$\exp_{10}(x) = 10^x = y \iff x = \log_{10}(y) ; x \in \mathbb{R} \text{ et } y \in \mathbb{R}_+^*$$

4.3 Dom
$$(\log_{10}) = \mathbb{R}_{+}^{*}$$
 Dom $(\exp_{10}) = \mathbb{R}$

4.4
$$\log_{10}(x) = 0 \implies \text{Z\'eros} (\log_{10}) = \{1\}$$

 $\exp_{10}(x) = 10^x = 0 \implies \text{Z\'eros} (\exp_{10}) = \emptyset$



5 5.1 La fonction réciproque de la fonction : $\exp : \mathbb{R} \to \mathbb{R}_+^*$; $\exp(x) = e^x$ est la fonction logarithme naturel : $\ln : \mathbb{R}_+^* \to \mathbb{R}$; $\ln(y) = x \iff y = e^x$ Remarque : $\ln = \log_e$

5.2
$$e^0 = 1$$
; $e^1 \approx 2,718$; $e^5 \approx 148,413$; $e^{-1} \approx 0,368$; $e^{-5} \approx 0,007$

5.3 Si
$$f(x) = \frac{e^x - 1}{x}$$
, alors

$$f(0,1) = 1,051709$$
; $f(0,01) = 1,0050167$; $f(0,001) = 1,000500167$; $f(0,0001) = 1,0000500017$.

Lorsque la préimage x tend vers 0, son image f(x) tend vers 1.