Exercices supplémentaires sur les identités remarquables et la factorisation.

Compléter les identités remarquables.

1)
$$16x^2 - 24x + 9 = (4x - 3)^2$$

2)
$$x^2 - 7 = (x + \sqrt{7}) \cdot (x - \sqrt{7})$$

3)
$$x^2 + 7x + 12 = (x+4) \cdot (x+3)$$

4)
$$9x^2 - 6x + 1 = (3x - 1)^2$$

5)
$$x^2-4x-21=(x+3)\cdot(x-7)$$

6)
$$x^2 - 81 = (x - 9) \cdot (x + 9)$$

7)
$$x^2 - 10x - 24 = (x+2) \cdot (x-12)$$

8)
$$x^2 - 9x + 14 = (x-2) \cdot (x-7)$$

9)
$$m^4 - 2m^2 + 1 = (m^2 - 1)^2$$

10)
$$t^4 - 625 = (t^2 - 25) \cdot (t^2 + 25)$$

Factoriser le plus possible les polynômes à l'aide de la mise en évidence.

$$\begin{aligned} & [1) \ (2x+3) \cdot (6x-7) + (2x+3) \cdot (11x-15) \\ & = (2x+3) \cdot \left[(6x-7) + (11x-15) \right] \\ & = (2x+3) \cdot \left[(7x-2) \right] \\ & = (7x-1) \cdot \left[(2x+2) \right] \\ & = (2x+4) \cdot \left[(3x+2) - (11x-7) \right] \\ & = (2x+4) \cdot \left[(3x+2) - (11x-7) \right] \\ & = (2x+1) \cdot \left[(3x+2) - (11x-7) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+7) \cdot \left[(3x+2) - (1) \right] \\ & = (x+3) \cdot \left[(1-x) - (1) \cdot (1-x) \right] \\ & = (x+3) \cdot \left[(1-x) - (1-x) \cdot (1-x) \right] \\ & = (x+3) \cdot \left[(1-x) - ($$

and de la mise en evidence.

9)
$$(7 \times -1) \cdot (2 \times +3) - (3 \times +1) \cdot (7 \times -1)$$
= $(7 \times -1) \cdot [-x+2]$
10) $(8 \times +4) \cdot (x+5) - (x-5) \cdot (2 \times +1)$
= $(42 \times +1) \cdot (x+5) - (x-5) \cdot (2 \times +1)$
= $(2 \times +1) \cdot [3 \times +25]$
11) $(3x-2) \cdot (x^2+1) - 5 \cdot (x^2+1)$
= $(x^2+1) \cdot [3x-2]$
12) $(3 \times +2) \cdot (x-1) + 4 \cdot (-1) \cdot (-1) \cdot (1-t) + (5 \times -3) \cdot (t-1)$
= $(t-1) \cdot [8t-5]$
13) $7 \times (8 \times -3) + (-1) \cdot (-1) \cdot (3 - 8 \times) \cdot (2 \times -5) - 16 \times +6$
= $(8 \times -3) \cdot [7 \times -(2 \times -5) - 2]$
= $(8 \times -3) \cdot [5 \times +3]$
14) $(1-x) \cdot (x+3) - 2 \cdot (x+3) + x \cdot (x+3)$
= $(x+3) \cdot [-1] = -x-3$
15) $(y+1) \cdot (-1) \cdot (-1) \cdot (2-y) + (y-2)^2 + (y-2)^2 + (y-2) \cdot (y+2)$
= $(y-2) \cdot [-(y+1) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+1) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$
= $(y-2) \cdot [-(y+3) + (y-2) + (y-2) + (y+2)]$