Simulations cinématiques à l'ordinateur (OS-AM)

Exercice 1 : MRUA sans vitesse initiale (Feuille 1)

Arrivé sur la Lune, un astronaute lâche un caillou et celui-ci tombe d'une hauteur de 25 [m]. La position du caillou est donc donnée par : $y = -\frac{1}{2} \cdot g_{\text{Lune}} \cdot t^2 + 25$ [m]

- a) Générer dans "Libreoffice Calc" une colonne de temps t = 0 à 6 [s], par pas de $\Delta t = 0,1$ [s].
- b) Calculer la colonne y(t)
- c) Calculer la colonne de la vitesse v_v
- d) Représenter les diagrammes : y(t) et v_v et ajuster une modélisation mathématique
- e) Que représente la pente de la droite v_y?

Exercice 2 : MRUA avec vitesse initiale (Feuille 2)

On lance, verticalement vers le haut, un caillou avec une vitesse initiale de 10,0 [m/s] du haut d'un pont. La hauteur du pont par rapport au sol est de 15,0 [m]. Décrire son mouvement en supposant que le frottement de l'air est négligeable et donc que son accélération est g_{Terre} .

Indications: utiliser l'exercice 1 en modifiant les paramètres.

A l'aide des graphiques effectués sur la feuille 2, répondre aux questions :

- a) Pour quel temps le caillou atteint-il sa hauteur maximale? Et quelle est cette hauteur?
- b) Quelle est la durée du « vol » du caillou, jusqu'à son contact avec le sol?
- c) Avec quelle vitesse le caillou touche-t-il le sol?

Vérifier vos résultats par le calcul

Exercice 3 : MUA (Feuille 3)

Cette fois le caillou est lancé sous un angle de 40° par rapport à l'horizontale, son mouvement est donné par $x(t) = 10,0 \cdot \cos(40^\circ) \cdot t$ et $y(t) = -\frac{1}{2} \cdot 9,81 \cdot t^2 + 10,0 \cdot \sin(40^\circ) \cdot t + 15,0$ [m]

- Générer une colonne de temps t = 0 à 2,6 [s], par pas de $\Delta t = 0.04$ [s].
- Calculer les colonnes x(t) et y(t)
- Calculer les colonnes des vitesses v_x et v_y
- Que valent les accélérations a_x et a_y ?
- Représenter les diagrammes: x(t) et y(t) et ajuster des modélisations mathématiques
 - Représenter le diagramme y(x) et ajuster une modélisation mathématique
 - Représenter les diagrammes v_x et v_y et ajuster des modélisations mathématiques
 - Trouver t et x tels que y = 0 (contact sol)
 - Trouver le sommet de la trajectoire
 - Vérifier par calculs les résultats des pour les points h) et i).

Exercice 4 : Mouvement sinusoïdal (Feuille 4)

Un mouvement sinusoïdal est donné par $x(t) = x_0 \cdot \sin(\omega \cdot t + \phi)$ où

$$x_0 = 0.120 \text{ [m]}$$
; $\omega = 4\pi \text{ [rad/s]}$ et $\varphi = \pi/2$.

- a) Générer une colonne de temps t = 0 à 1,0 [s], par pas de $\Delta t = 0.01$ [s].
- b) Calculer la colonne x(t)
- c) Calculer par dérivation les colonnes de la vitesse v et de l'accélération a.
- d) Représenter les diagrammes x ; v et a.
- e) Ajuster la modélisation mathématique de x.
- f) Déterminer (lecture sur les diagrammes) x; v et a pour t = 0.0 [s]; 0.25 [s] et 1.0 [s]
- g) Déterminer la période et la fréquence de ce mouvement.

Exercice 5 : MCU (Feuille 5)

Un mouvement est donné par les équations $x(t) = R \cdot \cos(\omega \cdot t)$; $y(t) = R \cdot \sin(\omega \cdot t)$. avec R = 2,0 [m] et $\omega = \pi/6$ [rad/s].

- a) Générer une colonne de temps t = 0 à 14 [s], par pas de $\Delta t = 0,1$ [s].
- b) Calculer les colonnes x(t) et y(t)
- c) Calculer par dérivation les colonnes v_x et v_y
- d) Calculer par dérivation les colonnes a_x et a_y
- e) Représenter les diagrammes: x(t) et y(t)
- f) Représenter le diagramme y(x)
- h) Représenter les diagrammes : a_x et x(t) dans un même graphique, que constatez-vous ?
- i) Ajuster une modélisation mathématique pour la courbe x(t)
- j) Déterminer la période T et la fréquence.