1)

x_i	0	1	2	3	4
$P(X=x_i)$	0,1	0,2	0,4	0,15	0,15

1.1)
$$P(1 \le X \le 3) = P(X = 1) + P(X = 2) + P(X = 3) = 0, 2 + 0, 4 + 0, 15 = 0, 75$$

1.2)
$$P(X \ge 2) = P(X = 2) + P(X = 3) + P(X = 4) = 0.4 + 0.15 + 0.15 = 0.7$$

1.3)
$$P(X=4 \mid X \ge 2) = \frac{P(X=4)}{P(X \ge 2)} = \frac{0.15}{0.7} = \frac{15}{70} = \frac{3}{14} \approx 21,43\%$$

1.4)
$$P(X=2 \mid X \neq 4) = \frac{P(X=2)}{P(X\neq 4)} = \frac{0.4}{1-0.15} = \frac{0.4}{0.85} = \frac{40}{85} = \frac{8}{17} \approx 47,06\%$$

$$E(X) = 2.05$$
; $E(X^2) = 5.55$; $Var(X) = E(X^2) - E(X) = 1.3475$; $\sigma(X) \approx 1.1608$

2) Vous avez 2 chances sur 2⁵ de gagner, soit 1 chance sur 16 de gagner 30 F.

En moyenne vous gagnez $\frac{30}{16}$ F par partie.

Vous avez $2^5 - 2$ chances sur 2^5 de perdre, soit 15 chances sur 16 de perdre 2 F.

En moyenne vous perdez $\frac{15}{16} \cdot 2 = \frac{30}{16}$ F par partie.

Le jeu est équilibré, en moyenne, vous gagnez autant que vous perdez. Le jeu est honnête.

3) Vous avez 1 chance sur 2¹⁴ de gagner, soit 1 chance sur 16'384 de gagner mille de francs. Vous avez 2¹⁴ – 1 chances sur 2¹⁴ de perdre, soit 16'383 chance sur 16'384 de perdre 1 franc.

En moyenne vous gagnez $\frac{1'000}{16'384} \approx 0,061035$ francs par partie.

En moyenne vous perdez $\frac{16'383}{16'384} \cdot 1 \approx 1$ franc par partie.

En moyenne vous êtes perdant, mais vous perdez peu, tandis que quand vous gagnez, c'est beaucoup.

Presque tous les jeux de hasard sont basés sur ce principe.

- 4) Par jeu l'élève dépense 30 francs!
- 4.1) A partir de 5 faces de suites, l'élève gagne 32 francs, soit plus que sa taxe de participation
- 4.2) Calculons combien l'élève gagne en moyenne par jeu.

Gain moyenne = $\frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 8 + \frac{1}{16} \cdot 16 + \dots + \frac{1}{2^{29}} \cdot 2^{29} + \frac{1}{2^{29}} \cdot 2^{29} = \underbrace{1 + 1 + \dots + 1}_{30 \text{ fois}} = 30$.

Le gain potentiel est énorme! Mais le professeur est-il solvable? Probablement pas! Donc en moyenne, l'élève reçoit du professeur autant que sa taxe de participation. De ce point de vue le jeu est équilibré.

4.3) Le jeu est équilibré et le gain potentielle est énorme. Même si le gain maximale est limité à un million, une majorité de gens est prête à jouer à ce jeu, nettement plus favorable que les loteries usuelles.

5) Loi de probabilité de la variable aléatoire X = "nombre de pile obtenu lors de 5 jets d'une pièce". Il n'y a qu'une chance sur 32 (= 2^5) de n'obtenir aucun pile.

Il y a une chance sur 32 d'obtenir la suite : PFFFF.

Mais on peut obtenir un seul P de 4 autres façons : FPFFF ; FFFFF ; FFFFF ; FFFFF.

Donc il y a 5 chances sur 32 d'obtenir exactement 1 P.

Il y a une chance sur 32 d'obtenir la suite : PPFFF.

Mais on peut obtenir exactement deux P de 9 autres façons :

PFPFF; PFFPF; FPFFF; FPFFF; FPFFF; FFPFF; FFPFP; FFFPP.

Donc il y a 10 chances sur 32 d'obtenir exactement 2 P.

Par symétrie, il y a 10 chances sur 32 d'obtenir exactement 2 F, soit 3 P.

Par symétrie, il y a 5 chances sur 32 d'obtenir exactement 1 F, soit 4 P.

Par symétrie, il y a 1 chance sur 32 d'obtenir exactement 0 F, soit 5 P.

x_i	0	1	2	3	4	5
$P(X=x_i)$	1/32	5/32	10/32	10/32	5/32	1/32

Espérance mathématique de X:

$$E(X) = (0.1 + 1.5 + 2.10 + 3.10 + 4.5 + 5.1) / 32 = 80 / 32 = 2.5$$

Ce résultat était attendu. Par symétrie, la moitié des lancers tombe sur pile, donc E(X) = 5/2.

Variance de X:

$$V(X) = (0 - 2.5)^{2} \cdot 1 + (1 - 2.5)^{2} \cdot 5 + (2 - 2.5)^{2} \cdot 10 + (3 - 2.5)^{2} \cdot 10 + (4 - 2.5)^{2} \cdot 5 + (5 - 2.5)^{2} \cdot 1) / 32$$

$$V(X) = 40 / 32 = 1.25$$

Ecart type de $X: \sigma(X) = \sqrt{1,25} \approx 1,118$